Практика 3. Модель сепаратора для газа с низким влагосодержанием


Модель представляет собой сепаратор цеха сепарации газа для УКПГ с низким влагосодержанием. Количество жидкости существенно не влияет на гидравлику регулирующих клапанов и объем сепаратора, доступный газу.

Часть 1. Модель клапана

- 1. Перенести ранее выполненную реализацию модели клапана в блок Simulink (Simulink/User-Defined Functions/Embedded MATLAB Function).
- 2. Убедиться, что модель клапана по-прежнему работоспособна.

Часть 2. Модель сепаратора

1. Реализовать модель сепаратора на основе следующей структурной схемы.

- 2. Задать параметры модели:
 - а. молярная масса газа (метана): $M=0.016~{\rm Kr/моль}$
 - b. объем сепаратора $V = 100 \text{ м}^3$
 - с. гидравлическое сопротивление обоих клапанов $\xi_0=50$
 - d. $\,$ условный диаметр клапанов $D_{
 m v} = 200 \,$ мм
- 3. Задать технологический режим модели. Для этого задать:
 - а. начальное положение клапанов $u_{\text{вх}} = u_{\text{вых}} = 50\%$;
 - b. температуру газа во всех точках моделируемой системы (в сепараторе, до клапана 1, после клапана 2) $T=300\ K$;
 - с. давление до входного клапана $P_{\rm BX} = 6.5~{\rm M}\Pi{\rm a}$
 - d. давление после выходного клапана $P_{\text{вых}} = 6.45 \text{ M}\Pi \text{a}$
- 4. Отладка модели
 - а. Построить следующие графики:
 - i. P_{cen} ;
 - ii. m;
 - iii. G_{BX} , G_{BDIX} .

Графики построить в одном окне, все графики подписать.

b. Запустить модель, убедиться в корректности ее функционирования.

- i. При запуске модели начальное значение массы газа в сепараторе равно нулю, поэтому начнется переходной процесс заполнения сепаратора газом, в результате которого масса и давление газа станут такими, что расходы на входе и выходе выровняются.
- ii. Убедиться, что при смене направления потока на клапане плотность пересчитывается на давление с той стороны клапана, откуда течет поток.
- iii. При изменении положения клапанов в интерактивном режиме расчетные параметры должны вести себя в соответствии с физикой процесса.

5. Тонкая настройка модели

- а. Подобрать гидравлическое сопротивление клапанов ξ_0 так, чтобы в установившемся режиме получился расход $G_{\rm BX}=G_{\rm BыX}=70\pm1~{\rm kr/cek}.$
- b. Задать начальное условие по массе газа так, чтобы при запуске модели пропал переходной процесс по заполнению сепаратора газом.

Часть 3. Генератор возмущения

- 1. Реализовать следующие виды возмущения.
 - а. Интерактивно задаваемая константа.
 - b. Возмущение от технологических переключений на УКПГ скачок давления на $\Delta P = +50 \text{ к}\Pi a$ от начального значения через 10 сек от начала моделирования.
 - с. Возмущение от газосборной сети розовый шум, полученный фильтрацией белого шума апериодическим звеном с постоянной времени $T=100~{\rm ce}$ к и с.к.о. $100~{\rm k}$ Па (обеспечить с.к.о. способом из предыдущей ЛР).
- 2. Сформировать общий сигнал возмущения в виде суперпозиции трех возмущений и добавить его ко входному давлению $P_{\rm BX}$. Аналогичным образом сформировать сигнал возмущений для выходного давления $P_{\rm BMX}$.
- 3. Запустить моделирование и в условиях наличия возмущений осуществить ручное управление клапаном поочередно для трех различных видов шума.